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ABSTRACT Macromolecular crowding dramatically affects cellular processes such as protein folding and assembly, regulation
of metabolic pathways, and condensation of DNA. Despite increased attention, we still lack a definition for how crowded
a heterogeneous environment is at the molecular scale and how this manifests in basic physical phenomena like diffusion. Here,
we show by means of fluorescence correlation spectroscopy and computer simulations that crowding manifests itself through the
emergence of anomalous subdiffusion of cytoplasmic macromolecules. In other words, the mean square displacement of
a protein will grow less than linear in time and the degree of this anomality depends on the size and conformation of the traced
particle and on the total protein concentration of the solution. We therefore propose that the anomality of the diffusion can be
used as a quantifiable measure for the crowdedness of the cytoplasm at the molecular scale.

INTRODUCTION

At first glance the cytoplasm of mammalian cells appears to

be an unstructured, aqueous liquid in which proteins, sugar

molecules, and other solvents are dissolved. Taking a closer

look, one realizes that the cytoplasm is in fact structured on

many length scales: on the mm-scale we find organelles like

the mitochondria, endosomes, and the Golgi apparatus. On

a smaller scale (;100 nm) the endoplasmic reticulum (ER)

imposes a random reticular network (Marsh et al., 2001)

together with the cytoskeletal elements, such as microtubuli

and actin filaments. Together, these yield a higher order

structure of the cytoplasm (see, for example, Alberts et al.,

1994 for a more detailed introduction). As a consequence,

diffusional movement of particles, such as macromolecules,

can be obstructed. In fact, it has been reported that the

diffusional mobility in the cytoplasm strongly decreases with

an increasing radius of the tracked particle, leaving particles

with a radius .25–30 nm immobile (Luby-Phelps et al.,

1986, 1987; Seksek et al., 1997; Arrio-Dupont et al., 2000).

Extensive computer simulations also have shown that the

molecular mobility is reduced when a particle diffuses in

a maze-like environment (Saxton, 1993): When increasing

the concentration c of obstacles in the maze, the tracer

particles appeared to diffuse slower and slower until complete

immobilization occurred beyond a certain value, c*. In-

terestingly, when approaching c* the characteristics of the

diffusional motion changed dramatically. The mean square

displacement v(t) of the monitored particles did no longer

grow linearly in time but, rather, showed a power law v(t); ta

with a , 1. This kind of diffusion is known as anomalous

subdiffusion and has been found in many different contexts;

e.g., for the movement of lipids onmodel membranes (Schutz

et al., 1997), integral membrane proteins on organellar mem-

branes (Weiss et al., 2003) and proteins in the nucleoplasm

(Wachsmuth et al., 2000), solute transport in porous media

(Drazer and Zanette, 1999), and the translocation of polymers

(Metzler and Klafter, 2003; Kantor and Kardar, 2004).

In the case of obstructed diffusion, the emergence of a tran-

sitional subdiffusive regime is observed when the concen-

tration of obstacles is increased. This transient subdiffusive

behavior collapses back to normal diffusion after a timescale

T which diverges in the limit c / c*. At c ¼ c* (the so-

called percolation threshold), subdiffusion is observed on all

timescales. Whereas T grows with increasing obstacle con-

centration, the (transient) anomality parameter a decreases

concomitantly from unity to a finite value a* at c*, which is

given by a* � 0.697 and a* � 0.526 for two- and three-

dimensional environments, respectively (Havlin and Ben-

Avraham, 1987; Bouchaud and Georges, 1990). These

values were obtained for continuum percolation in a ‘‘Swiss-

cheese’’ model (see Havlin and Ben-Avraham, 1987 for

details) and presumably represent the best approximation to

the actual values in nature. However, other mechanisms can

also lead to anomalous subdiffusion where the entire range

0 , a , 1 may be observed (see, for example, Bouchaud

and Georges, 1990; Metzler and Klafter, 2000). Regardless

of its microscopic origin, anomalous subdiffusion has been

shown to strongly influence the formation of spatiotemporal

patterns (Weiss, 2003) as well as kinetic rates (Saxton, 2002)

and the time course of enzymatic reactions (Berry, 2002).

When neglecting the higher-order structuring of the

cytoplasm by cytoskeletal elements and membranes, one

could anticipate from the above that one deals with an

unstructured aqueous solution in which normal diffusion
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should be observed. Yet, the assumption of the cytoplasm as

being a homogenous viscous solution is somewhat mis-

leading as differently sized proteins, lipids, and sugars con-

stitute up to 40% of the cytoplasmic volume (Fulton, 1982).

This phenomenon is commonly referred to as molecular
crowding and has recently received increased attention (Ellis
and Minton, 2003; Rivas et al., 2004) since, for example,

enzymatic reactions and protein folding appear to be strongly

affected by the crowdedness (for reviews see Ellis, 2001; Hall

and Minton, 2003). Also, crowding seems to contribute

significantly to the high viscosity of the cytoplasm which has

been determined to be three- to fourfold higher than that of

water (Verkman, 2002; Elsner et al., 2003). Despite the

increased interest in the phenomena associated with molec-

ular crowding, the term ‘‘crowdedness’’ so far has been used

without a quantitative definition of what it actually means. In

other words, we lack a definition of a quantity which

summarizes how crowded an environment really is and also

states in which primary physical property of the heteroge-

neous fluid the crowdedness is manifested. As basic criterion,

a quantitativemeasure of crowdedness should be independent

of influences imposed by the cytoskeletal and membrane

obstacles discussed above. Rather, it should reflect a basic and

unambiguous physical quantity which can be assigned to the

highly, yet heterogeneous, concentrated protein/sugar solu-

tion called cytoplasm.

Here we utilize fluorescence correlation spectroscopy

(FCS) to show that inert tracer particles show anomalous

subdiffusion in the cytoplasm of living cells over a wide

range of particle sizes. This behavior is found to occur

irrespective of the stage of the cell cycle or the presence of

ER membrane structures and cytoskeletal scaffolds. Using

computer simulations, we demonstrate that this effect most

likely arises due to molecular crowding, e.g., diffusing

particles are scattered by nearby particles due to excluded-

volume interactions. We verify our hypothesis in vitro by

determining the degree of anomalous diffusion of tracer

particles in highly concentrated dextran solutions.

MATERIALS AND METHODS

Cell culture

HeLa cell lines were grown in DMEM supplemented with 10% fetal calf

serum, 100 mg/ml penicillin, 100 mg/ml streptomycin, and 10 mM

glutamine (Gibco, Eggenstein, Germany). FITC-labeled dextrans of

different molecular masses (10, 40, 500, 2000 kDa: Molecular Probes,

Eugene, OR; 150 kDa: Sigma, Germany) were either injected with an

Eppendorf microinjection system (Eppendorf, Hamburg, Germany) or

incorporated by electroporation. Microtubules were disrupted by incubating

cells with 20 mM nocodazole at 37�C for one hour. To disrupt the ER

network, cells were treated with 5 mg/ml Filipin III (Sigma, Germany) for

30 min at 37�C and 45 min at 30�C. The efficiency of the treatment was

confirmed by examining the change of the fluorescence pattern of HeLa cells

expressing the ER marker Sec61 fused to CFP (see Axelsson and Warren,

2004 for details). Experiments using mitotic cells were accomplished by

arresting HeLa cells in the metaphase of mitosis by incubating them for 16 h

in the presence of 100 nM nocodazole (Sigma Chemical, St. Louis, MO)

(Zieve et al., 1980).

For subcellular fractionation, HeLa cells were scraped off the culture dish

and collected by centrifugation (500g, 5 min.). Cells were washed with

phosphate-buffered saline (PBS) twice and once with homogenization

buffer. The homogenization buffer consisted of 20 mM HEPES-KOH

(pH 7.4), 1 mM DTT (both Biomol, Hamburg, Germany), 250 mM sucrose

(USB, Cleveland, OH), 1 mM EDTA (Merck, Hamburg, Germany), plus

protease inhibitors (1 mg/ml aprotinin, 1 mg/ml leupeptin, 1 mg/ml pepstatin,

1 mg/ml antipain, 1 mM Benzamidine-HCl, 40 mg/ml phenylmethylsulfonyl

fluoride). Cell pellets were resuspended in 4 volumes of homogenization

buffer in the presence of protease inhibitors and homogenized using a ball-

bearing homogenizer (10 passages with a 16 mm clearing). The homogenate

was then centrifuged sequentially at 103g (P1), 104g (P10), and at 105g

(P100), retaining the supernatant at each subsequent centrifugation step. The

final 105g supernatant (S100) was boiled in equal volume sample buffer and

various amounts (0.1–10 mg) of protein were resolved on a 12.5% SDS-

polyacrylamide gel. Protein bands were visualized by Coomassie Brilliant

blue G250 (Merck, Darmstadt, Germany).

Fluorescence microscopy and FCS

FCS measurements were carried out on a LSM510/ConfoCor 2 (Carl Zeiss,

Jena, Germany) using a 488-nm laser line for illumination. The fluorescence

was detected with a bandpass filter (505–550 nm) and the objective

(Apochromat 403/1.2 W) was heated to 37�C using an objective heater

(Bioptechs, Butler, PA). The pinhole for all shownmeasurements was 1 Airy

unit. We verified that for free diffusion in water, the autocorrelation function

of the fluorescence was well fitted by Eq. 1 with a ¼ 1. Thus, our analysis

does not suffer from deviations of the confocal volume from a three-

dimensional Gaussian point-spread function (see also discussions in Hess

and Webb, 2002; Weiss et al., 2003). For each cell and condition, at least 30

fluorescence time series of 10 s duration were recorded, autocorrelated, and

superimposed for fitting with XMGRACE (see http://plasma-gate.weizmann.

ac.il/Grace/).

Autocorrelation times tD were translated into apparent hydrodynamic

radii by comparison with green fluorescent protein (EGFP, Molecular

Probes) in PBS: From the diffusion coefficient D � 85 mm2/s of GFP in

buffer (Terry et al., 1995) and the determined diffusive time tD¼ 130ms, we

obtained via the Einstein-Stokes equation D ¼ kBT/(6phr) a mean radius

r ¼ 2.6 nm for GFP (kBT � 4.3 3 10�21 J is the thermal energy and h �
10�3 kg/(m 3 s) is the viscosity of water). This value agrees well with the

dimensions derived from the crystal structure of GFP (Yang et al., 1996).

Fitting anomalous diffusion

To determine if the experimentally observed autocorrelation function C(t) is

governed by anomalous subdiffusion one has to generalize the well-known

expression for the autocorrelation decay due to normal diffusion. Knowing

the illumination profile (which is usually approximated by a three-

dimensional Gaussian), this task is essentially done when the propagator

Gðr~1; r~2; tÞ of the density of the (sub)diffusing particles is known. This

function simply tells the probability to find a particle at position r~2 after

a time t when it was initially at position r~1: For normal diffusion Gðr~1; r~2; tÞ
is simply a Gaussian which satisfies the diffusion equation and it is easy to

derive the appropriate expression for C(t) (for details see, for example, Hess

and Webb, 2002; Weiss et al., 2003). In contrast, the propagator for

subdiffusion is somewhat more difficult to obtain. Bearing in mind that

subdiffusion is commonly defined via the asymptotic power-law increase of

the mean square displacement v(t) ; ta (a , 1), a straight-forward (yet

approximative) approach to determine Gðr~1; r~2; tÞ is to assume a time-

dependent diffusion coefficient D(t)¼ Gta�1 so that v(t)¼ D(t)3 t. Clearly,

this interpretation is problematic for small times as D(t) diverges for t / 0.

Yet, assuming that one still can use this approximation for all times, one

obtains the propagator
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Gðr~1; r~2; tÞ ¼ expð�jr~1 � r~2j2=ðGtaÞÞffiffiffiffiffiffiffiffiffiffiffi
pGt

a
p ;

which satisfies the modified diffusion equation

@Gðr~1; r~2; tÞ
@t

¼ DðtÞDGðr~1; r~2; tÞ:

Using this expression in conjunction with a Gaussian illumination profile,

we obtain

CðtÞ ¼ 11 fe
�t=tT

ð11 ðt=tDÞaÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11 ðt=ðS2tDÞÞa

q : (1)

Here, a is the degree of the anomalous subdiffusion, and tD is the

diffusive time which is related to the diffusion coefficient D and the width

r0 of the focus as tD ¼ r20=ð4DÞ for a ¼ 1. The parameter S considers

the unavoidable extension of the confocal volume along the optical axis,

whereas f, tT are the triplet fraction and time, respectively, which take care

of the photophysics on short timescales.

The fitting function Eq. 1 has been used previously to determine

anomalous subdiffusion in FCS experiments (Schwille et al., 1999;

Wachsmuth et al., 2000; Weiss et al., 2003) and the very same approach

served as a starting point to derive fitting functions for quantitative

photobleaching experiments (Feder et al., 1996; Saxton, 2001). However,

the outlined strategy appears somewhat questionable due to the divergence

of the time-dependent diffusion coefficient on short timescales. A math-

ematically correct treatment of the problem therefore has to employ a

fractional Fokker-Planck equation (FFPE), i.e., a sophisticated extension of

the normal diffusion equation. For the FFPE one can analytically calculate

the propagator in terms of Fox functions for all a , 1 (see Metzler and

Klafter, 2000). From this, one could derive C(t) analytically. However, the
emerging function only has a limited value for a later fitting procedure as its

complexity severely hampers the fitting to experimental data. We therefore

have chosen a different approach: Using the series expansions of the

propagator (cf. Metzler and Klafter, 2000), we calculated numerically the

propagator and the resulting correlation function. We then fitted these curves

with Eq. 1 (fixing the triplet fraction to f ¼ 0) to test if the obtained value

afit corresponds to the value aFPE imposed in the FFPE. In all cases, Eq. 1

yielded a good fit to the C(t) as obtained from the FFPE (see Fig. 1 for

a representative example). The anomality degrees afit and aFPE on the other

hand were slightly different (Fig. 1, inset) and a linear regression yielded

afit ¼ 1.1 3 aFPE � 0.12. In the range 0.5 # a # 1 the deviations between

Eq. 1 and the FFPE is therefore ,10% which is within the accuracy of the

experimental data. In view of this and due to its much simpler use in the

fitting procedure, we have chosen to always use Eq. 1 for fitting.

Computer simulations

To investigate the effect of crowdedness by means of computer simulations,

we considered a cubic probe volume with linear extension L and periodic

boundary conditions. In total, N ¼ 5000 spherical particles/proteins having

molecular masses in the range 50 kD–1 MDa were positioned at random

locations in the probe volume. By changing L we were able to change the

apparent concentration of particles. To consider excluded volume effects, we

imposed a soft-core potential between the particles, which is common for

mesoscopic simulations (Nikunen et al., 2003): Each particle k experienced
a (repulsive) force f~ik ¼ Að1� d=rcÞe~ik from a neighboring molecule i along

the vector e~ik pointing from particle k to particle i. Here, d measures the

distance between the particles i, k, minus the radii ri, rk of the two particles.

For d . rc the particles do not meet and thus f~ik ¼ f~ki ¼ 0: Besides this

excluded volume interaction, all particles were also subject to thermal noise,

i.e., for each time step Dt the new position emerged from the old one via the

(overdamped) Langevin equation x~iðt1DtÞ ¼~jj1Dt+
k
f~ik=gi: Here, j is

Gaussian random number with variance 2DiDt and the friction of the particle
is assumed to be given by Stoke’s formula (gi¼ 6phri) from which one also

obtains the diffusion coefficient via Di ¼ kBT/gi. The radii were calculated

from the imposed molecular massmi via the empiric formula ri¼ (8mi/50)
1/3

nm. This relation has been derived by considering that BSA (m¼ 66 kDa) is

approximately globular and has an apparent radius of 2 nm. The distribution

p(m) of molecular weights m was taken to be either a Poissonian or uniform

(see main text), and a upper cutoff at m ¼ 1 MDa was imposed. Before

monitoring the diffusional motion, the particles were allowed to equilibrate

for 5000 time steps. The remaining parameters were Dt¼ 10�9 s, rc ¼ 2 nm,

A/(6ph) ¼ 103 mm2/s.

RESULTS

We first monitored with FCS the diffusional motion of

fluorescently labeled dextrans in PBS to verify that we

observe normal diffusion under these conditions. Indeed,

fitting the experimental data with Eq. 1 yielded a¼ 16 0.05

which indicates that finding anomalous subdiffusion with

our setup is not an artifact of a distorted confocal volume

(Hess and Webb, 2002; see also discussion in Weiss et al.,

2003). Representative autocorrelation curves C(t) for

dextrans of different molecular weight are shown in Fig. 2.

The measurements in PBS also allowed us to determine the

apparent hydrodynamic radius rH of the particles (see

Methods). In the inset of Fig. 2 we show the increase of

the radii for increasing molecular weight m (rH ; m0.4). In

fact, the radii increase slower than anticipated for a simple

random-coil polymer for which a description as a linear

Gaussian chain yields rH ; m0.5 (Doi, 1996). This deviation

is in agreement with previous reports (Cheng et al., 2002)

and may be explained by the fact that dextrans become

strongly branched polymers when their mass increases

(Nordmeier, 1993).

FIGURE 1 The autocorrelation curve C(t) obtained for subdiffusive

motion in the framework of a FFPE (aFPE ¼ 0.65, open symbols) is well
described by a fit with Eq. 1 (afit ¼ 0.59, full line). (Inset) The actual value

afit for the anomality obtained by this fitting (closed symbols) slightly

deviates from the value aFPE imposed in the FFPE (dashed line). The

dependence is best described by afit ¼ 1.1aFPE � 0.12 (full line).
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We next investigated the motion of labeled dextrans in the

cytoplasm of HeLa cells in interphase. Representative

examples for the obtained autocorrelation curves C(t) are
shown in Fig. 3. In strong contrast to the behavior in PBS, all

dextrans showed subdiffusive motion in cytoplasm albeit

with varying degrees of the anomality parameter a.
Moreover, the characteristic timescales tD of the autocorre-

lation decayswere increasedwith respect to the ones found for

PBS which indicates an overall decrease of the diffusional

mobility. Surprisingly, the determined degrees of anomalitya
did not correlate linearly with the hydrodynamic sizes of the

dextran particles (see Table 1). Rather, we observed a very

strong subdiffusive motion for small dextrans (40 kDa) which

relaxed for increasing mass (500 kDa) and then became

stronger again (2 MDa). We next verified that the observed

subdiffusion in cytoplasm was not a particular feature of

dextran by monitoring the diffusion of a FITC-labeled IgG

antibody (m � 150 kDa) in cytoplasm. Having an apparent

hydrodynamic radius rH � 5.5 nm (cf. also Arrio-Dupont

et al., 2000), we expected IgG to show a similar degree of

subdiffusion as seen with 150 kDa dextran (rH � 5 nm). In

fact, we observed a stronger anomality (a� 0.55, see also Fig.

3, inset), which may be explained by the fact that an IgG has

a different shape than a 150 kDa dextran in solution.

We hypothesized that molecular crowding may have

caused the observed anomalous subdiffusion rather than

obstruction by cytoskeletal elements or membrane structures.

To test for the validity of this assumption, we monitored the

diffusional properties of a selection of dextrans in i),

nocodazole-treated; ii), latrunculin-treated; iii), Filipin-trea-

ted; and iv),mitotic cells. In cases i and ii themicrotubules and

actin filaments are depolymerized, respectively, whereas in

case iii the ERmembrane is broken down and othermembrane

structures like the Golgi apparatus are not affected (Axelsson

and Warren, 2004). In case iv the interior of the cell has

undergone major changes due to the impending cell division,

e.g., the microtubules form a spindle rather than an astral

array. In agreement with our hypothesis, the subdiffusion

persisted in all caseswith similar values fora (see summary in

Table 2). This provides strong evidence that obstruction by

higher-order structures is not the major cause of the observed

subdiffusion. Rather, the observed subdiffusion is caused by

molecular crowding.

To obtain further evidence for if and when molecular

crowding can cause the emergence of subdiffusion, we used

computer simulations of spherical soft-coremolecules subject

to thermal noise and excluded volume effects (see Methods).

To be able to model the cytoplasmic environment, we had to

first get an idea about the distribution of protein masses/sizes

in the cytoplasm of mammalian cells. We therefore analyzed

purified HeLa cytosol by SDS page and Coomassie staining

(seeMethods).The resultingdistributionofmolecularweights

p(m) is shown in Fig. 4 a and ismost consistent with a Poisson

distribution with a mean Æmæ ¼ 80 kDa. Bearing in mind that

the used approach actually overestimates the fraction of small

proteins due to the denaturing conditions in the gel (protein

FIGURE 2 Representative autocorrelation curves for dextran in PBS

(squares, triangles, diamonds: molecular masses m ¼ 10 kDa, 150 kDa,

2 MDa, respectively). Best fits according to Eq. 1 (full lines) always resulted

in a� 1, indicating normal diffusion. (Inset) The hydrodynamic radius rH as

extracted from the diffusive time tD of the autocorrelation decay increases

approximately as rH ; m0.4 (dashed line).

FIGURE 3 Representative autocorrelation curves for dextran in the

cytoplasm of living cells in interphase (squares, triangles, diamonds:

molecular masses 10 kDa, 150 kDa, 2 MDa, respectively). Best fits

according to Eq. 1 (full lines) revealed that all dextrans moved

subdiffusively (a ¼ 0.86, 0.74, 0.64; from left). (Inset) A FITC-labeled

IgG antibody (m ¼ 150 kDa, rH � 5.5 nm) also showed strong subdiffusion

(a � 0.55).

TABLE 1 Summary of masses m, hydrodynamic radii rH
(in PBS), and anomalities a and diffusive times tD of dextrans

in the cytoplasm of living cells

m rH a tD

10 kDa 1.8 nm 0.84 6 0.04 0.39 6 0.05 ms

40 kDa 3.5 nm 0.59 6 0.04 2.9 6 1.3 ms

150 kDa 4.8 nm 0.73 6 0.03 6.1 6 1.9 ms

500 kDa 6.8 nm 0.82 6 0.05 3.1 6 1 ms

2 MDa 14.4 nm 0.71 6 0.04 15.9 6 4.5 ms
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complexes are disrupted), we tested two distributions in the

simulations which were inspired by the experimental

distribution p(m) (see Fig. 4 a): i), a Poisson distribution

with Æmæ ¼ 350 kDa, and ii), a uniform distribution. In both

cases we only considered proteins with masses up to 1 MDa

and, for simplicity, assumed the proteins to be globular. In

both simulation settings, we observed a size-dependent

emergence of anomalous subdiffusion which also clearly

depended on the fractional volume occupied by the globular

proteins (‘‘excluded volume’’). In Fig. 4 b we show

representative curves for the mean square displacement

obtained for scenario i, i.e., a Poissonian distribution of

molecular masses, at an excluded volume of 13%. Although

small proteins were still diffusing more or less normally, the

big particles clearly moved subdiffusively. This size-de-

pendence is further highlighted in Fig. 4 c, where one can

observe the decrease of the anomality parameter a with

increasing effective particle size. This result was only slightly

altered in scenario ii, i.e., for a uniform size distribution. The

decrease of a with increasing radii persisted (Fig. 4 d) albeit
occurring at bigger radii and at lower values for the excluded

volume (7% instead of 13%). As both settings yielded the

same gross features, we conclude that an excluded volume

interaction (¼ molecular crowding) likely explains the

subdiffusion observed in the cytoplasm of living cells. The

successful simulations of course only represent the simplest

possible configuration due to the use of globular particles. To

quantitatively explain the experimentally observed a-values,
a more detailed approach may be necessary which includes,

for example, the polymeric nature of the probe (see also

Discussion).

To verify the simulation results and consistently test if the

mere effect of crowding can cause anomalous subdiffusion,

we also studied the diffusional properties of some labeled

dextrans (10 kDa, 40 kDa, 500 kDa) in aqueous solutionwhen

varying the molar percentages of macromolecules (unlabeled

dextran in the range 60–90 kDa; from Acros Organics, Geel,

Belgium) to hinder diffusion. As these artificially created

crowded fluids were intended to mimic the cytoplasm of

living cells, we expected to observe an overall correlation of

the a-values between in vitro and in vivo experiments using

a particular probe. Consistent with our findings in vivo (the

cytoplasm), we observed an increase of the diffusional time

tD and a concomitant decrease of the anomality parameter a
for the tested dextrans when the concentration C of unlabeled

dextran (i.e., the crowding) in the solutionwas increased (Fig.

5). These experiments also confirmed the simulation results,

i.e., the interaction via excluded volume can cause sub-

diffusion. In accordance with the results in living cells, we

again observed that 40 kDa dextran appeared to bemuchmore

subdiffusive than its 500 kDa counterpart. We speculate that

in both cases this may be caused by a partial reptational

movement of the fairly short 40 kDa polymer whereas the

more heavy dextrans may be more globular and are thus less

prone to reptation (see also Discussion). Nevertheless, we

FIGURE 4 (a) The distribution p(m) of protein massesm in the cytoplasm

of HeLa cells (see Methods) is well described by a Poissonian (dashed line,

mean Æmæ ¼ 80 kDa). Due to the denaturing conditions of the gel, the

fraction of low protein masses is overestimated and can be expected to be

significantly higher in reality. (b) Average mean square displacement v(t) for

globular proteins with radii 2 nm, 3.6 nm, and 5.4 nm (from top) as obtained

by simulations using a Poissonian weight distribution (mean Æmæ ¼ 350 kDa

to soften the overestimation of low masses). The proteins occupied a

fractional volume of 13%. Dashed lines highlight the power-law increase

v(t) ; ta. (c) Using the same parameters, the anomality parameter a is seen

to decrease for increasing particle radii r. The full line is a guide to the eye.

(d) Same as in (c) for a uniform distribution of molecular weights (50 kDa#

m # 1MDa). Here, a similar decrease of a is observed, yet it occurs for

higher values of r and a lower fractional volume occupied by the proteins

(7%).

TABLE 2 Summary of the found degrees of anomality a and diffusive times tD in the cytoplasm of living cells under

various treatments

m Interphase a, tD Mitotic a, tD Filipin a, tD Nocodazole a, tD Latrunculin a, tD

10 kDa 0.87 6 0.03 0.74 6 0.02 0.74 6 0.06 0.76 6 0.07 0.74 6 0.05

0.39 6 0.05 ms 0.39 6 0.06 ms 0.55 6 0.26 ms 0.34 6 0.03 ms 1.8 6 0.06 ms

150 kDa 0.73 6 0.03 0.75 6 0.04 0.83 6 0.04 0.76 6 0.06 0.76 6 0.05

6.1 6 1.9 ms 1.7 6 0.6 ms 2.2 6 0.8 ms 7.8 6 4.3 ms 1.9 6 0.3 ms

500 kDa 0.82 6 0.05 0.75 6 0.06 0.76 6 0.05 0.79 6 0.04 0.76 6 0.03

3.1 6 0.9 ms 5.6 6 1.3 ms 3.2 6 0.7 ms 2.7 6 0.5 ms 3.3 6 0.2 ms
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conclude that the degree of anomalous diffusion (a) is a direct
reflection of molecular crowding. By comparing in vivo

measurements with those in vitro, one can therefore use the

determined a-values as a measure for molecular crowding.

DISCUSSION

In summary, we have determined with FCS that inert tracer

particles show anomalous subdiffusion in the cytoplasm of

mammalian cells. As the occurrence of subdiffusion was not

altered in cells where cytoskeletal or organellar membrane

architecture have been disrupted, we conclude that the

observed subdiffusion is due to molecular crowding. In

support of this view, we showed with simulations that

subdiffusion naturally arises in a concentration-dependent

manner in a system where particles are subject to Brownian

motion and only interact via excluded volumes. We further

verified these simulation results by monitoring the emer-

gence of subdiffusion in highly concentrated dextran solu-

tions. Thus, we have provided strong evidence that molecular

crowding causes anomalous subdiffusion in the cytoplasm

of living cells.

It is likely that the observed subdiffusion only persists for

intermediate times and that normal diffusion is reencoun-

tered for asymptotically large times. For example, in our

simulations we observed via the growth of the mean square

displacement v(t) that even for a fairly low excluded volume

subdiffusion transiently emerged on scales t, 1 ms and then
collapsed back to normal diffusion. For increasing particle

concentration this subdiffusive regime eventually extended

beyond the 1 ms-scale (cf. Fig. 4). Similar phenomena are,

for example, also found for obstructed diffusion with immo-

bile obstacles near to the percolation threshold (Saxton,

2001) or for reptating polymers (Doi, 1996). Bearing this in

mind, our results do not contradict but rather complement

previous studies on cytoplasmic diffusion by means of photo-

bleaching techniques (Seksek et al., 1997; Arrio-Dupont

et al., 2000) which employ larger spatial and temporal scales

than in FCS and therefore potentially miss the regime of

subdiffusion.

In regards to the nature of the used probe, we observed that

small dextran molecules can exhibit a much stronger

anomalous subdiffusion than their more heavy counterparts

(cf. Table 1 and Fig. 5). The most likely explanation for this

phenomenon is a (partially) reptational movement of small

dextrans. In the ideal case, reptation yields a ¼ 0.5 (Doi,

1996) whereas obstructed diffusion of globular particles

typically yields a higher value for a (see Introduction). For

our case, we propose that small dextrans adopt a ‘‘snake-

like’’ conformation whereas the more heavy dextrans are

more globular and thus are rather subject to obstructed

diffusion than reptation. This reasoning is supported by the

fact that fructan, a close relative to dextran, was shown to

behave like a random-coil polymer for massesm � 100kDa;
whereas above 100 kDa it appeared more like a globule

(Kitamura et al., 1994). This reasoning appears even more

plausible when bearing in mind that the conformation of

(bio)polymers can depend critically on the solvent and that

dextrans show strong branching when their mass increases

(Nordmeier, 1993). Of course, for reptational movement the

simple picture used in the simulations becomes invalid and

has to be replaced by a more elaborate polymer model in

a heterogeneous environment. It will be interesting to study

the crossover from reptation to obstructed diffusion in more

detail (M. Weiss et al., unpublished results).

Despite the caveat that the observed subdiffusion may be

a transient feature, it is still likely to play a major role in

cytoplasmic processes. In our approach with FCS, we ob-

served subdiffusion on a scale of ;500 nm (the diameter of

the confocal volume), a scale which is;100-fold bigger than

the typical radius of a globular protein and almost corresponds

to the typical size of anEscherichia coli bacterium.At least on

this scale, anomalous diffusion can greatly modulate the

interaction of proteins, e.g., in reaction networks (Berry,

2002; Saxton, 2002) and maybe in protein folding (Ellis,

2001; Hall and Minton, 2003).

Most importantly, the described emergence of subdiffu-

sion provides a means to define a quantitative measure to

what crowdedness actually means. In fact, the term

‘‘crowdedness’’ by its mere literal sense signals that the

FIGURE 5 (a) Representative autocorrelation curves for 10 kDa dextran

in solutions with different crowdedness due to dissolved unlabeled dextran

(0.08 and 0.25 g/ml, from left). A shift and stretching of C(t) is visible for

increasing crowdedness. (b) Same as in a but for 500 kDa dextran. (c) The
anomality parameter a decreases with increasing crowdedness as measured

by the macromolecular concentration (diamonds, 10 kDa; asterisks, 40 kDa;

squares, 500 kDa). (d) The diffusive time tD concomitantly increases with

increasing macromolecular concentration, indicating an increase of the

effective viscosity. For better visibility error bars have been omitted.

Subdiffusion Due to Molecular Crowding 3523

Biophysical Journal 87(5) 3518–3524



size and conformation of a test particle dictates if it feels an

environment as being crowded. Being a water molecule, the

cytoplasm does not appear to be any more crowded than any

other solution. However, for a macromolecule, and even

more for a polymer-like dextran, the cytoplasm with all its

embedded proteins provides an obstacle-rich environment.

We therefore propose that the degree of anomality a can

serve as a size- and conformation-dependent quantity to

characterize the concentration/composition of a heteroge-

neous solution like the cytoplasm. In other words, by using

a defined and standardized set of in vitro solutions (where the

composition is varied), it should be feasible to use the degree

of anomality a as a quantitative measure to probe molecular

crowding in vivo, be it in the cytoplasm, the nucleus, or other

cellular or extracellular environments.
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